Grant G. Connell

- Design Objectives
 - Investigate BCI for severely handicapped individuals
 - Use time, frequency, and phase displays
 - Use DSP techniques for near real time responses
 - Use only the mono input to the sound card of a PC for multiple channel displays (start with two channels)

Design requirements

- Some compatibility with Modular EEG H/W
 - Can use analog section with modulator section, +/- 5V operation
- Single input (mono to sound card)
- Two channel prototype, expandable to 32 channels
 - Reference leg for both channels
- Select either SSB, AM, or FM modulation technique
 - Selected AM for frequency stability, better spectrum management than FM
- Displays
 - Stripline, Vertical FFT, Vertical Phase, Waterfall
 - Application screen size = 1024 by 768

• System Design (AM Modulation)

Amplitude

• AM System Design, Processing Chain

- System Design: Displays
 - Vertical FFT
 - Vertical Phase
 - Strip Chart
 - Waterfall

- Development Environment
 - Use C,C++ Builder IDE (from Borland)
 - Third party components (knobs, switches)
 - Low level sound card drivers
 - All software developed internally
 - Could use Intel DSP library for open source development

Vertical FFT Display, 6 Hz and 12 Hz inputs

• Vertical Phase Display, 2 Hz and 5 Hz

Waterfall Display, 6 Hz and 12 Hz inputs

RAW FFT Spectrum 3.5 kHz and 4.0 kHz carriers

Alpha Bursts, 9 Hz

- First Hardware Protype
 - Two PC boards
 - Dual channel analog design similar to Modular EEG
 - Dual channel modulator board using low cost ICs , output transformer coupled for isolation from the PC
 - Single supply input (+12 volt) from isolation transformer, converted to +/- 5 volts.
 - Front panel gain control for each channel
 - Power supply LEDs

Hardware Block Diagram

Breadboard Designs

Prototype Unit

Chassis Layout

• FM System Design, Processing Chain

Dual Channel FM Spectrum

Dual Channel FM Waveforms

Modulation Scheme Comparison

- AM Modulation
 - Good spectrum management (1500 Hz per channel)
 - 80 dB dynamic range (2.0 mv to 0.20 uv)
 - Requires only 3 IC's plus a transistor per channel (most recent design)
 - Gain calibration procedure with sound card required
 - 60 dB cross-talk isolation between channels
- FM Modulation
 - Limited spectrum management (4 kHz per channel)
 - 80 dB dynamic range (1.5 mv to 0.15 uv)
 - Requires only 3 IC's per channel
 - Gain calibration built-in via H/W and S/W design
 - 60 dB cross-talk isolation between channels

- Prototyped single channel AM modulation unit
 - Current drain approximately 6.5 ma. @ 9 volts
- Prototype dual channel FM modulation unit
 - Current drain approximately 5.75 ma. @ 9 volts
 - Switched to CMOS version of NE555 IC
- Prototype dual channel AM modulation unit
 - Current drain approximately 7.0 ma. @ 9 volts
 - Switched to simpler AM modulator with better noise performance
 - Used CMOS version of NE555 IC (ICM7555)
- All prototypes completed and operational

Single Channel AM Unit

Dual Channel FM Unit

Dual Channel AM Unit

- Current Status
 - Completing final S/W application
 - AM demodulation design complete
 - FM demodulation design complete
 - Added adjustable LP and BP filters (S/W)
 - Switched to digital LO (for a two channel system only), used cheaper ICs to generate the local oscillator
 - Dual channel AM and FM designs completed and prototypes built

Software Update

- EEG Probe software
 - Added record and playback capability
 - Near real-time response with IIR digital filters
- Sound Card Interface to NeuroServer
 - Converts sound card data to EDF format and interfaces to the NeuroServer
 - Also converts sound card data to ModEEG format for RS-232 interfaces, requires Eltima virtual RS-232 driver
- Both software packages available at the SourceForge web site:
 - http://openeeg.sourceforge.net/doc/hw/sceeg/